宇宙ロボットの世界市場2021-2031:機会分析・産業予測

◆英語タイトル:Space Robotics Market By Solution (Remotely Operated Vehicles, Remote Manipulator System, Software, Services), By Application (Deep Space, Near Space, Ground), By End User (Commercial, Government): Global Opportunity Analysis and Industry Forecast, 2021-2031

Allied Market Researchが発行した調査報告書(ALD23MA010)◆商品コード:ALD23MA010
◆発行会社(リサーチ会社):Allied Market Research
◆発行日:2023年2月
◆ページ数:324
◆レポート形式:英語 / PDF
◆納品方法:Eメール(受注後24時間以内)
◆調査対象地域:グローバル
◆産業分野:航空宇宙
◆販売価格オプション(消費税別)
Online Only(1名閲覧、印刷不可)USD3,570 ⇒換算¥542,640見積依頼/購入/質問フォーム
Single User(1名閲覧)USD5,730 ⇒換算¥870,960見積依頼/購入/質問フォーム
Enterprise User(閲覧人数無制限)USD9,600 ⇒換算¥1,459,200見積依頼/購入/質問フォーム
販売価格オプションの説明はこちらでご利用ガイドはこちらでご確認いただけます。
※お支払金額は「換算金額(日本円)+消費税+配送料(Eメール納品は無料)」です。
※Eメールによる納品の場合、通常ご注文当日~2日以内に納品致します。
※レポート納品後、納品日+5日以内に請求書を発行・送付致します。(請求書発行日より2ヶ月以内の銀行振込条件、カード払いに変更可)
※上記の日本語題名はH&Iグローバルリサーチが翻訳したものです。英語版原本には日本語表記はありません。
※為替レートは適宜修正・更新しております。リアルタイム更新ではありません。

❖ レポートの概要 ❖

アライドマーケットリサーチ社による当調査レポートでは、世界の宇宙ロボット市場について2021年度から2031年度までにわたる市場規模予測を掲載しています。イントロダクション、エグゼクティブサマリー、市場概要、ソリューション別(遠隔操作車、遠隔操作システム、ソフトウェア、サービス)分析、用途別(深宇宙、近宇宙、地上)分析、エンドユーザー別(商業、政府)分析、地域別(北米、ヨーロッパ、アジア太平洋、中南米・中東/アフリカ)分析、企業状況などの項目を掲載しています。なお、当市場の主要企業には、Altius Space Machines、Maxar Technologies、motiv space systems, inc.、Astrobotic Technology、Olis Robotics、space applications services nv/sa、ispace inc.、Northrop Grumman Corporation、honeybee robotics、Oceaneering International, Inc.などが含まれております。
・イントロダクション
・エグゼクティブサマリー
・市場概要
・世界の宇宙ロボット市場規模:ソリューション別
  - 遠隔操作車の市場規模
  - 遠隔操作システムの市場規模
  - ソフトウェアの市場規模
 - サービスの市場規模
・世界の宇宙ロボット市場規模:用途別
  - 深宇宙における市場規模
  - 近宇宙における市場規模
  - 地上における市場規模
・世界の宇宙ロボット市場規模:エンドユーザー別
  - 商業における市場規模
  - 政府における市場規模
・世界の宇宙ロボット市場規模:地域別
  - 北米の宇宙ロボット市場規模
  - ヨーロッパの宇宙ロボット市場規模
  - アジア太平洋の宇宙ロボット市場規模
  - 中南米・中東/アフリカの宇宙ロボット市場規模
・企業状況
・企業情報

The report incorporates the study of the global space robotics market which represents to a field of engineering and science that helps the people and astronauts in space exploration and mission activities. It is widely used in satellite maintenance, assembling, satellite servicing and gathering constraints in exceptionally tough environment in space. It utilizes space robotics to accelerating schedules and minimize the costs which leads to incur minimal risks and improve overall performance. The space robots increase the ability of human to work in space by offering greater handling capabilities to astronauts. As a result, space robotics finds massive application in freely operating on any planetary surface.
The rising demand for on orbit assembly, increasing servicing of satellite across the globe, huge investments in the space exploration activities by several countries, and debris removal are among the major factors driving the demand for the space robotics. The pioneering deployment of space robots in near space, deep space, and ground from government and commercial sectors is expected to boost the growth rate in the forecast period. The increase in government spending on remote manipulator system as automation improves human efficiency along with increasing application of remote manipulator system in space has fueled the overall demand for space robotics. For instance, in the recent past, the state council in China had revealed the “New Generation Artificial Intelligence Development Plan” to develop the local AI industry to $ 150 billion by 2030.
Moreover, the rising consciousness about conservation of fossil fuel is letting to the adoption of space robotic systems as these robots use less fuel and delivers enhanced services. The fourth industrial revolution, which is also called as industry 4.0, is one of the most significant trials taking place all over the world, particularly in high-industrialized and developed regions such as North America and Europe. The digitalization, data exchange, and automation are the three of its main characteristics.
The contracts, partnerships, and joint ventures are usually the strategies used by major companies to stay competitive in the market. For example, SpaceX was given an agreement to launch two Kazakhstan satellites as a part of agreement with various other satellites using the Falcon 9 launch rocket. Moreover, the United Launch Services, LLC was developed by a joint venture between The Boeing Company and Lockheed Martin Corporation.
The top companies’ actions improve the global space robotics market share to new peaks. For instance, in 2022, NASA had nominated 12 companies for the VADR (Venture-Class Acquisition of Dedicated and Rideshare) missions. The list of companies includes Northrop Grumman Systems, Astra Space, L2 Solutions, Phantom Space, Blue Origin, ABL Space Systems, Virgin Orbit, United Launch Services, Rocket Lab USA, SpaceX, Spaceflight, and Relativity Space. These companies will be able to get task orders as firm-fixed-price to make launch services for NASA-sponsored missions. All these agreements have a five-year buying period and a maximum growing value of $ 300 million. Such partnership in the space robotics market is expected to increase the sales in the forecast period.
The global space robotics market is segmented on the basis of solution, application, end user, and region. By solution, it is divided into remotely operated vehicles, remote manipulator system, software, and services. By application, it is classified into deep space, near space, and ground. By end user, it is classified into commercial and government. By region, the market is analyzed across North America, Europe, Asia-Pacific, and LAMEA.
Growth drivers, restraints, and opportunities are explained in the study to better understand the market dynamics. This study further highlights key areas of investment. In addition, it includes Porter’s five forces analysis to understand the competitive scenario of the industry and the role of each stakeholder. The study features strategies adopted by key market players to maintain their foothold in the market.

Companies have adopted product development and product launch as their key development strategies in the space robotics market. The key players operating in this market are Altius Space Machines, Astrobotic Technology, Honeybee Robotics, ispace Inc., Maxar Technologies, Motiv Space Systems Inc., Northrop Grumman Corporation, Oceaneering International, Inc., Olis Robotics, and Space Applications Services.

Key Benefits For Stakeholders
●This report provides a quantitative analysis of the market segments, current trends, estimations, and dynamics of the space robotics market analysis from 2021 to 2031 to identify the prevailing space robotics market opportunities.
●The market research is offered along with information related to key drivers, restraints, and opportunities.
●Porter’s five forces analysis highlights the potency of buyers and suppliers to enable stakeholders make profit-oriented business decisions and strengthen their supplier-buyer network.
●In-depth analysis of the space robotics market segmentation assists to determine the prevailing market opportunities.
●Major countries in each region are mapped according to their revenue contribution to the global market.
●Market player positioning facilitates benchmarking and provides a clear understanding of the present position of the market players.
●The report includes the analysis of the regional as well as global space robotics market trends, key players, market segments, application areas, and market growth strategies.

Key Market Segments

By Solution
● Remotely Operated Vehicles
● Remote Manipulator System
● Software
● Services

By Application
● Deep Space
● Near Space
● Ground

By End User
● Commercial
● Government

By Region
● North America
○ U.S.
○ Canada
○ Mexico
● Europe
○ UK
○ Germany
○ France
○ Italy
○ Russia
○ Rest of Europe
● Asia-Pacific
○ China
○ Japan
○ India
○ Australia
○ South Korea
○ Rest of Asia-Pacific
● LAMEA
○ Latin America
○ Middle East
○ Africa

● Key Market Players
○ Altius Space Machines
○ Maxar Technologies
○ motiv space systems, inc.
○ Astrobotic Technology
○ Olis Robotics
○ space applications services nv/sa
○ ispace inc.
○ Northrop Grumman Corporation
○ honeybee robotics
○ Oceaneering International, Inc.

❖ レポートの目次 ❖

CHAPTER 1: INTRODUCTION
1.1. Report description
1.2. Key market segments
1.3. Key benefits to the stakeholders
1.4. Research Methodology
1.4.1. Primary research
1.4.2. Secondary research
1.4.3. Analyst tools and models
CHAPTER 2: EXECUTIVE SUMMARY
2.1. CXO Perspective
CHAPTER 3: MARKET OVERVIEW
3.1. Market definition and scope
3.2. Key findings
3.2.1. Top impacting factors
3.2.2. Top investment pockets
3.3. Porter’s five forces analysis
3.3.1. Moderate bargaining power of suppliers
3.3.2. Moderate bargaining power of buyers
3.3.3. High threat of substitutes
3.3.4. High threat of new entrants
3.3.5. Moderate intensity of rivalry
3.4. Market dynamics
3.4.1. Drivers
3.4.1.1. Increase in investments for space robotics across the globe
3.4.1.2. Rising demand for satellite launches
3.4.1.3. Rising joint ventures by key players to expand business and geographic reach

3.4.2. Restraints
3.4.2.1. Excessive costs involved in space robotics and space exploration missions
3.4.2.2. Increasing space debris to hamper space robotics in the coming years

3.4.3. Opportunities
3.4.3.1. Technological upgrades in space industry
3.4.3.2. Use of software defined technology in space robots for flexibility to alter space missions

3.5. COVID-19 Impact Analysis on the market
CHAPTER 4: SPACE ROBOTICS MARKET, BY SOLUTION
4.1. Overview
4.1.1. Market size and forecast
4.2. Remotely Operated Vehicles
4.2.1. Key market trends, growth factors and opportunities
4.2.2. Market size and forecast, by region
4.2.3. Market share analysis by country
4.3. Remote Manipulator System
4.3.1. Key market trends, growth factors and opportunities
4.3.2. Market size and forecast, by region
4.3.3. Market share analysis by country
4.4. Software
4.4.1. Key market trends, growth factors and opportunities
4.4.2. Market size and forecast, by region
4.4.3. Market share analysis by country
4.5. Services
4.5.1. Key market trends, growth factors and opportunities
4.5.2. Market size and forecast, by region
4.5.3. Market share analysis by country
CHAPTER 5: SPACE ROBOTICS MARKET, BY APPLICATION
5.1. Overview
5.1.1. Market size and forecast
5.2. Deep Space
5.2.1. Key market trends, growth factors and opportunities
5.2.2. Market size and forecast, by region
5.2.3. Market share analysis by country
5.3. Near Space
5.3.1. Key market trends, growth factors and opportunities
5.3.2. Market size and forecast, by region
5.3.3. Market share analysis by country
5.4. Ground
5.4.1. Key market trends, growth factors and opportunities
5.4.2. Market size and forecast, by region
5.4.3. Market share analysis by country
CHAPTER 6: SPACE ROBOTICS MARKET, BY END USER
6.1. Overview
6.1.1. Market size and forecast
6.2. Commercial
6.2.1. Key market trends, growth factors and opportunities
6.2.2. Market size and forecast, by region
6.2.3. Market share analysis by country
6.3. Government
6.3.1. Key market trends, growth factors and opportunities
6.3.2. Market size and forecast, by region
6.3.3. Market share analysis by country
CHAPTER 7: SPACE ROBOTICS MARKET, BY REGION
7.1. Overview
7.1.1. Market size and forecast By Region
7.2. North America
7.2.1. Key trends and opportunities
7.2.2. Market size and forecast, by Solution
7.2.3. Market size and forecast, by Application
7.2.4. Market size and forecast, by End User
7.2.5. Market size and forecast, by country
7.2.5.1. U.S.
7.2.5.1.1. Key market trends, growth factors and opportunities
7.2.5.1.2. Market size and forecast, by Solution
7.2.5.1.3. Market size and forecast, by Application
7.2.5.1.4. Market size and forecast, by End User
7.2.5.2. Canada
7.2.5.2.1. Key market trends, growth factors and opportunities
7.2.5.2.2. Market size and forecast, by Solution
7.2.5.2.3. Market size and forecast, by Application
7.2.5.2.4. Market size and forecast, by End User
7.2.5.3. Mexico
7.2.5.3.1. Key market trends, growth factors and opportunities
7.2.5.3.2. Market size and forecast, by Solution
7.2.5.3.3. Market size and forecast, by Application
7.2.5.3.4. Market size and forecast, by End User
7.3. Europe
7.3.1. Key trends and opportunities
7.3.2. Market size and forecast, by Solution
7.3.3. Market size and forecast, by Application
7.3.4. Market size and forecast, by End User
7.3.5. Market size and forecast, by country
7.3.5.1. UK
7.3.5.1.1. Key market trends, growth factors and opportunities
7.3.5.1.2. Market size and forecast, by Solution
7.3.5.1.3. Market size and forecast, by Application
7.3.5.1.4. Market size and forecast, by End User
7.3.5.2. Germany
7.3.5.2.1. Key market trends, growth factors and opportunities
7.3.5.2.2. Market size and forecast, by Solution
7.3.5.2.3. Market size and forecast, by Application
7.3.5.2.4. Market size and forecast, by End User
7.3.5.3. France
7.3.5.3.1. Key market trends, growth factors and opportunities
7.3.5.3.2. Market size and forecast, by Solution
7.3.5.3.3. Market size and forecast, by Application
7.3.5.3.4. Market size and forecast, by End User
7.3.5.4. Italy
7.3.5.4.1. Key market trends, growth factors and opportunities
7.3.5.4.2. Market size and forecast, by Solution
7.3.5.4.3. Market size and forecast, by Application
7.3.5.4.4. Market size and forecast, by End User
7.3.5.5. Russia
7.3.5.5.1. Key market trends, growth factors and opportunities
7.3.5.5.2. Market size and forecast, by Solution
7.3.5.5.3. Market size and forecast, by Application
7.3.5.5.4. Market size and forecast, by End User
7.3.5.6. Rest of Europe
7.3.5.6.1. Key market trends, growth factors and opportunities
7.3.5.6.2. Market size and forecast, by Solution
7.3.5.6.3. Market size and forecast, by Application
7.3.5.6.4. Market size and forecast, by End User
7.4. Asia-Pacific
7.4.1. Key trends and opportunities
7.4.2. Market size and forecast, by Solution
7.4.3. Market size and forecast, by Application
7.4.4. Market size and forecast, by End User
7.4.5. Market size and forecast, by country
7.4.5.1. China
7.4.5.1.1. Key market trends, growth factors and opportunities
7.4.5.1.2. Market size and forecast, by Solution
7.4.5.1.3. Market size and forecast, by Application
7.4.5.1.4. Market size and forecast, by End User
7.4.5.2. Japan
7.4.5.2.1. Key market trends, growth factors and opportunities
7.4.5.2.2. Market size and forecast, by Solution
7.4.5.2.3. Market size and forecast, by Application
7.4.5.2.4. Market size and forecast, by End User
7.4.5.3. India
7.4.5.3.1. Key market trends, growth factors and opportunities
7.4.5.3.2. Market size and forecast, by Solution
7.4.5.3.3. Market size and forecast, by Application
7.4.5.3.4. Market size and forecast, by End User
7.4.5.4. Australia
7.4.5.4.1. Key market trends, growth factors and opportunities
7.4.5.4.2. Market size and forecast, by Solution
7.4.5.4.3. Market size and forecast, by Application
7.4.5.4.4. Market size and forecast, by End User
7.4.5.5. South Korea
7.4.5.5.1. Key market trends, growth factors and opportunities
7.4.5.5.2. Market size and forecast, by Solution
7.4.5.5.3. Market size and forecast, by Application
7.4.5.5.4. Market size and forecast, by End User
7.4.5.6. Rest of Asia-Pacific
7.4.5.6.1. Key market trends, growth factors and opportunities
7.4.5.6.2. Market size and forecast, by Solution
7.4.5.6.3. Market size and forecast, by Application
7.4.5.6.4. Market size and forecast, by End User
7.5. LAMEA
7.5.1. Key trends and opportunities
7.5.2. Market size and forecast, by Solution
7.5.3. Market size and forecast, by Application
7.5.4. Market size and forecast, by End User
7.5.5. Market size and forecast, by country
7.5.5.1. Latin America
7.5.5.1.1. Key market trends, growth factors and opportunities
7.5.5.1.2. Market size and forecast, by Solution
7.5.5.1.3. Market size and forecast, by Application
7.5.5.1.4. Market size and forecast, by End User
7.5.5.2. Middle East
7.5.5.2.1. Key market trends, growth factors and opportunities
7.5.5.2.2. Market size and forecast, by Solution
7.5.5.2.3. Market size and forecast, by Application
7.5.5.2.4. Market size and forecast, by End User
7.5.5.3. Africa
7.5.5.3.1. Key market trends, growth factors and opportunities
7.5.5.3.2. Market size and forecast, by Solution
7.5.5.3.3. Market size and forecast, by Application
7.5.5.3.4. Market size and forecast, by End User
CHAPTER 8: COMPETITIVE LANDSCAPE
8.1. Introduction
8.2. Top winning strategies
8.3. Product Mapping of Top 10 Player
8.4. Competitive Dashboard
8.5. Competitive Heatmap
8.6. Top player positioning, 2021
CHAPTER 9: COMPANY PROFILES
9.1. Altius Space Machines
9.1.1. Company overview
9.1.2. Key Executives
9.1.3. Company snapshot
9.1.4. Operating business segments
9.1.5. Product portfolio
9.1.6. Key strategic moves and developments
9.2. Northrop Grumman Corporation
9.2.1. Company overview
9.2.2. Key Executives
9.2.3. Company snapshot
9.2.4. Operating business segments
9.2.5. Product portfolio
9.2.6. Business performance
9.2.7. Key strategic moves and developments
9.3. Maxar Technologies
9.3.1. Company overview
9.3.2. Key Executives
9.3.3. Company snapshot
9.3.4. Operating business segments
9.3.5. Product portfolio
9.3.6. Business performance
9.3.7. Key strategic moves and developments
9.4. motiv space systems, inc.
9.4.1. Company overview
9.4.2. Key Executives
9.4.3. Company snapshot
9.4.4. Operating business segments
9.4.5. Product portfolio
9.4.6. Key strategic moves and developments
9.5. honeybee robotics
9.5.1. Company overview
9.5.2. Key Executives
9.5.3. Company snapshot
9.5.4. Operating business segments
9.5.5. Product portfolio
9.5.6. Key strategic moves and developments
9.6. Astrobotic Technology
9.6.1. Company overview
9.6.2. Key Executives
9.6.3. Company snapshot
9.6.4. Operating business segments
9.6.5. Product portfolio
9.6.6. Key strategic moves and developments
9.7. Olis Robotics
9.7.1. Company overview
9.7.2. Key Executives
9.7.3. Company snapshot
9.7.4. Operating business segments
9.7.5. Product portfolio
9.7.6. Key strategic moves and developments
9.8. space applications services nv/sa
9.8.1. Company overview
9.8.2. Key Executives
9.8.3. Company snapshot
9.8.4. Operating business segments
9.8.5. Product portfolio
9.8.6. Key strategic moves and developments
9.9. ispace inc.
9.9.1. Company overview
9.9.2. Key Executives
9.9.3. Company snapshot
9.9.4. Operating business segments
9.9.5. Product portfolio
9.9.6. Key strategic moves and developments
9.10. Oceaneering International, Inc.
9.10.1. Company overview
9.10.2. Key Executives
9.10.3. Company snapshot
9.10.4. Operating business segments
9.10.5. Product portfolio
9.10.6. Business performance



❖ 免責事項 ❖
http://www.globalresearch.jp/disclaimer

★リサーチレポート[ 宇宙ロボットの世界市場2021-2031:機会分析・産業予測(Space Robotics Market By Solution (Remotely Operated Vehicles, Remote Manipulator System, Software, Services), By Application (Deep Space, Near Space, Ground), By End User (Commercial, Government): Global Opportunity Analysis and Industry Forecast, 2021-2031)]についてメールでお問い合わせはこちらでお願いします。


◆H&Iグローバルリサーチのお客様(例)◆