◆英語タイトル:Computational Fluid Dynamics Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028
|
| ◆商品コード:IMARC23FB0018
◆発行会社(リサーチ会社):IMARC
◆発行日:2023年2月1日
◆ページ数:112
◆レポート形式:英語 / PDF ◆納品方法:Eメール
◆調査対象地域:グローバル
◆産業分野:化学
|
◆販売価格オプション
(消費税別)
※
販売価格オプションの説明はこちらで、
ご利用ガイドはこちらでご確認いただけます。
※お支払金額は「換算金額(日本円)+消費税+配送料(Eメール納品は無料)」です。
※Eメールによる納品の場合、通常ご注文当日~2日以内に納品致します。
※レポート納品後、納品日+5日以内に請求書を発行・送付致します。(請求書発行日より2ヶ月以内の銀行振込条件、カード払いに変更可)
※上記の日本語題名はH&Iグローバルリサーチが翻訳したものです。英語版原本には日本語表記はありません。
※為替レートは適宜修正・更新しております。リアルタイム更新ではありません。
❖ レポートの概要 ❖IMARC社の本調査資料では、2022年に2,286.8百万ドルであった世界の数値流体力学(CFD)市場規模が、2028年までに3,693.8百万ドルに到達し、予測期間中に年平均8.1%で拡大すると予測しています。本資料は、数値流体力学(CFD)の世界市場を調査対象とし、序論、範囲・調査手法、エグゼクティブサマリー、イントロダクション、展開モデル別(クラウド型モデル、オンプレミス型モデル)分析、エンドユーザー別(自動車、航空宇宙・防衛、電気・電子、産業機械、その他)分析、地域別(ヨーロッパ、アジア太平洋、北米、中東・アフリカ、中南米)分析、SWOT分析、バリューチェーン分析、ポーターズファイブフォース分析、価格分析、競争状況などをまとめています。
・序論
・範囲・調査手法
・エグゼクティブサマリー
・イントロダクション
・世界の数値流体力学(CFD)市場規模:展開モデル別
- クラウド型モデルの市場規模
- オンプレミス型モデルの市場規模
・世界の数値流体力学(CFD)市場規模:エンドユーザー別
- 自動車における市場規模
- 航空宇宙・防衛における市場規模
- 電気・電子における市場規模
- 産業機械における市場規模
- その他における市場規模
・世界の数値流体力学(CFD)市場規模:地域別
- ヨーロッパの数値流体力学(CFD)市場規模
- アジア太平洋の数値流体力学(CFD)市場規模
- 北米の数値流体力学(CFD)市場規模
- 中東・アフリカの数値流体力学(CFD)市場規模
- 中南米の数値流体力学(CFD)市場規模
・SWOT分析
・バリューチェーン分析
・ポーターズファイブフォース分析
・価格分析
・競争状況 |
The global computational fluid dynamics (CFD) market size reached US$ 2,286.8 Million in 2022. Looking forward, IMARC Group expects the market to reach US$ 3,693.8 Million by 2028, exhibiting a growth rate (CAGR) of 8.1% during 2023-2028.
Computational fluid dynamics (CFD), is a scientific method of numerically analyzing fluid flow, heat transfer and other related phenomena. It utilizes applied mathematics, physics and computational software to visualize the effect of a gas or liquid on the object it flows past. CFD is a cost-effective method of testing product prototypes before their launch. Since its introduction in the 1980s, it has witnessed a range of developments which have enabled it to be used in different fields such as modeling and design, and research and development.
At present, the growth of the market can be attributed to rapid advancements in the aerospace and aeronautics industries. In these sectors, CFD is applied in the maintenance of numerous critical systems and components of an aircraft. For instance, it is used for optimizing engine cooling and fuel delivery systems. CFD can also predict the performance of new processes and designs before their production and implementation. Owing to this, it has become an integral part of the engineering analysis and design environment in several organizations.
Key Market Segmentation:
IMARC Group provides an analysis of the key trends in each sub-segment of the global computational fluid dynamics (CFD) market report, along with forecasts at the global and regional level from 2023-2028. Our report has categorized the market based on deployment model and end-user.
Breakup by Deployment Model:
Cloud-Based Model
On-Premises Model
Breakup by End-User:
Automotive
Aerospace and Defense
Electrical and Electronics
Industrial Machinery
Energy
Material and Chemical Processing
Others
Breakup by Region:
Europe
Asia Pacific
North America
Middle East and Africa
Latin America
Competitive Landscape:
The report has also analysed the competitive landscape of the market along with the profiles of the key players.
Key Questions Answered in This Report
1. What was the size of the global computational fluid dynamics market in 2022?
2. What is the expected growth rate of the global computational fluid dynamics market during 2023-2028?
3. What are the key factors driving the global computational fluid dynamics market?
4. What has been the impact of COVID-19 on the global computational fluid dynamics market?
5. What is the breakup of the global computational fluid dynamics market based on the deployment model?
6. What is the breakup of the global computational fluid dynamics market based on the end-user?
7. What are the key regions in the global computational fluid dynamics market?
1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 Introduction
4.1 Overview
4.2 Key Industry Trends
5 Global Computational Fluid Dynamics Market
5.1 Market Overview
5.2 Market Performance
5.3 Impact of COVID-19
5.4 Market Breakup by Deployment Model
5.5 Market Breakup by End-User
5.6 Market Breakup by Region
5.7 Market Forecast
6 Market Breakup by Deployment Model
6.1 Cloud-Based Model
6.1.1 Market Trends
6.1.2 Market Forecast
6.2 On-Premises Model
6.2.1 Market Trends
6.2.2 Market Forecast
7 Market Breakup by End-User
7.1 Automotive
7.1.1 Market Trends
7.1.2 Market Forecast
7.2 Aerospace and Defense
7.2.1 Market Trends
7.2.2 Market Forecast
7.3 Electrical and Electronics
7.3.1 Market Trends
7.3.2 Market Forecast
7.4 Industrial Machinery
7.4.1 Market Trends
7.4.2 Market Forecast
7.5 Energy
7.5.1 Market Trends
7.5.2 Market Forecast
7.6 Material and Chemical Processing
7.6.1 Market Trends
7.6.2 Market Forecast
7.7 Others
7.7.1 Market Trends
7.7.2 Market Forecast
8 Market Breakup by Region
8.1 Europe
8.1.1 Market Trends
8.1.2 Market Forecast
8.2 Asia Pacific
8.2.1 Market Trends
8.2.2 Market Forecast
8.3 North America
8.3.1 Market Trends
8.3.2 Market Forecast
8.4 Middle East and Africa
8.4.1 Market Trends
8.4.2 Market Forecast
8.5 Latin America
8.5.1 Market Trends
8.5.2 Market Forecast
9 SWOT Analysis
9.1 Overview
9.2 Strengths
9.3 Weaknesses
9.4 Opportunities
9.5 Threats
10 Value Chain Analysis
11 Porters Five Forces Analysis
11.1 Overview
11.2 Bargaining Power of Buyers
11.3 Bargaining Power of Suppliers
11.4 Degree of Competition
11.5 Threat of New Entrants
11.6 Threat of Substitutes
12 Price Analysis
13 Competitive Landscape
13.1 Market Structure
13.2 Key Players
13.3 Profiles of Key Players
❖ 免責事項 ❖http://www.globalresearch.jp/disclaimer